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Previous studies of interface conditions satisfying one or
more of the above criteria for various applications have concen-Multidomain treatments are studied in order to solve the steady

compressible Euler equations using implicit time-dependent finite trated mainly on explicit difference schemes. Ciment [8, 9]
volume methods on block-structured grids. Unconditionally GKS- studied the matching of dissipative schemes with or without
stable and conservative treatments are proposed for continuous mesh refinement. Browning, Kreiss, and Oliger [6] analyzed a
and discontinuous 1D matchings and extended to 2D patched grids.

mesh refinement technique with the non-dissipative leap-frogEfficiency of the present interface conditions is demonstrated
scheme. Starius [43] considered composite-mesh methods forthrough transonic flow calculations over single- and two-element

airfoils. Q 1996 Academic Press, Inc. accurately treating curvilinear boundaries. Oliger [34] exam-
ined a hybrid difference method in order to treat the boundary
condition for a high-order difference scheme in a stable way.
Berger considered the stability of mesh refinement in space1. INTRODUCTION
and time [4] and proposed a procedure to derive conservative
difference approximations at grid interfaces for one- or two-In computational fluid dynamics, the domain decomposition

technique is now widely used to deal with complex flow geome- dimensional arbitrarily overlapping grids [5]. Thuné [46] of-
fered some general stability results for approximations of hyper-tries. This technique makes the distribution of the mesh points

easier, reduces the size of the algebraic problems to be solved, bolic systems on substructured domains. Rai [41] devised a
conservative interface treatment for patched grids having aand allows for an efficient use of parallel computers [22].

In the subdomains, one can use either a structured or an common cell-center line. Chesshire and Henshaw [7] studied
interface conditions for composite overlapping grids with em-unstructured mesh. Unstructured meshes generally lead to more

sophisticated and time-consuming methods per mesh point, but phasis on the accuracy. Enander [12] analyzed the stability of
a patching procedure. Pärt and Sjögreen [39, 40] analyzed thethey allow for optimal distribution of mesh points and are very

flexible for practical applications (see, for instance, [1, 13, 19, stability of Berger’s conservative flux interpolation method
for the Lax–Wendroff scheme and applied the reconstruction21, 30]). On the other hand, structured meshes lend themselves

more easily to high accuracy and simplify the structure of the method to derive stable and nearly conservative interface condi-
tions. Steger and Benek [44] reviewed some of the advantagesalgebraic systems. Non-body-fitted Cartesian grids have also

been studied (see, for instance, [10, 32, 33, 38]). They undoubt- and difficulties of using various composite-grid schemes. Gus-
tafsson [17] recently reported some theoretical and numericaledly provide the most accurate methods for the flow regions

away from the solid boundaries, but they require a special results about the solution of the Euler and Navier–Stokes equa-
tions on patched and overlapping grids. The matching of differ-treatment for the solid boundaries.

In the present paper, we study the multidomain technique ent differential equations was also considered in [17].
Multidomain treatment with implicit schemes is a more dif-using structured body-fitted grids for calculating steady solu-

tions of hyperbolic systems of conservation laws. The equations ficult task because at each time step all the discrete unknowns
are spatially coupled. The key point is the choice of interfaceare solved by implicit time-dependent finite-volume methods.

At the interface of two adjacent subdomains, the solutions conditions that allow for independent and stable solution of
difference equations in each subdomain. This does not seemare matched by some interface or matching conditions. The

difficulty here is to define these interface conditions so that the to have been analyzed in any depth in the past for hyperbolic
problems. Despite this, successful computations have been re-global approximation is spatially accurate, GKS-stable (i.e.,

stable in the sense of Gustafsson, Kreiss, and Sundström [18]), ported. For example, Rai [42] devised an iterative procedure
at each time step to match the second-order Osher scheme usingconservative, and converges to a steady-state.
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his patched grid technique developed in [41]. Another example a NACA0012 airfoil and a two-element airfoil are computed
using the stable implicit multidomain technique.is given by Baysal, Fouladi, and Lessard [2] who applied an

implicit upwind scheme, combined with a multigrid approach
on overlapping and embedded grids. In both of the above exam- 2. ONE-DIMENSIONAL INTERFACE PROBLEM AND
ples, some matrix elements associated with the interface values GKS-STABILITY THEORY
are dropped to zero in the implicit system to uncouple the
difference equations in each subdomain. In this section, we first formulate the interface problem for a

In the present paper, a multidomain technique is considered linear one-dimensional problem using general multilevel three-
for dissipative implicit schemes and various interface configu- point difference schemes and then state some basic results for
rations such as matchings with and without mesh refinement later stability analysis using the GKS-theory.
and patched grids. Stable and conservative interface conditions
are proposed. The present interface conditions are inexpensive 2.1. Formulation of the Interface Problem
and convenient for parallel computing. They require no grid

We consider the linear hyperbolic system:
overlapping or iteration at each time step to be unconditionally
GKS-stable and they lead to uncoupled solution of the interior

Wt 1 AWx 5 0, 21 , x , 1, t . 0, (1)implicit schemes. The idea for constructing these interface con-
ditions is simply to lag in time the interface values that depend
on the adjacent grid. This time lagging does not degrade the where W(x, t) [ Rm and A is a constant non-singular m 3
stability of the interior implicit schemes, provided it is correctly m matrix having m real eigenvalues and a complete set of
done.1 The time lagging may degrade the convergence rate for eigenvectors. Without loss of generality, we suppose that A is
obtaining the steady-state solution (see [52] for a convergence of diagonal form and partioned as A 5 diag(AI, AII), AI . 0,
study). In our present calculations, this convergence loss has AII , 0.
been found to be quite small (see Section 7.2). The system (1) is completed by the initial condition

The remainder of this paper is organized as follows. In
Section 2, the difference approximation is first formulated W(x, 0) 5 f (x), 21 , x , 1, (2)
for a one-dimensional hyperbolic problem on the strip 21
, x , 1 containing two subgrids and then reduced to a

and boundary conditionsconvenient form for stability analysis. The GKS theory is
briefly recalled in order to analyze the stability of the interface

W I(21, t) 5 SIW II(21, t) 1 g21(t), t $ 0, (3)problem. Some important properties of dissipative difference
schemes are discussed. In order to show later on that our W II(1, t) 5 SIIW I(1, t) 1 g1(t), t $ 0, (4)
interface treatment, which is stable for dissipative difference
schemes, remains sometimes, but not always, stable for

where W I and W II correspond to the partition of A and SI andnondissipative schemes, a class of schemes based on a linear
SII are real rectangular matrices.multistep method in time and a centred difference in space

For the numerical solution of this initial-boundary valueis also briefly discussed. In Section 3, matching conditions
problem, the spatial domain 21 # x # 1 is split into twofor several easily workable 1D interface configurations are
subdomains $u 5 [21, 0] and $v 5 [0, 1]. The subdomain Dupresented and their GKS-stability is analyzed. In Section 4,
(resp. Dv) is divided into cells of equal length Dx (u) (resp. Dx (v))conservation of interface conditions for nonlinear conservation
centred at x 5 x (u)

j (resp. x (v)
j ). For the location of these cellslaws is addressed. First, the conservation of the interface

with respect to the interface x 5 0, we assume that there is aconditions discussed in Section 3 is analyzed by using the
cell of Du and a cell of Dv having either a common side at theBerger’s conservation criterion [5]. In case of no conservation
interface (matching of first kind ) or a common center at thea conservative treatment is presented. In Section 5, multidi-
interface (matching of second kind ). Furthermore, a matchingmensional stability is considered and the universal artificial
is said to be continuous if Dx (u) 5 Dx (v) or discontinuous if not.stabilizing technique of Michelson [31] is discussed for

For convenience, the cells are numbered from right to leftdomain decomposition. In Section 6, a stable conservative
in Du and from left to right in Dv . The numerical solutions ininterface treatment is proposed for patched grids. The patched
the subdomains are denoted bygrid we consider has a common cell-side line at the interface

and thus is different from the one treated by Rai [42] and
Enander [12]. Finally in Section 7, applications to the 2D U n

j P W(x (u)
j , n Dt), j 5 0, 1, ..., Nu 1 1,

Euler equations are presented. Various external flows over
V n

j P W(x (v)
j , n Dt), j 5 0, 1, ..., Nv 1 1,

1 Preliminary results of this study have been presented in [29] and heuristi-
cally extended to the Navier–Stokes equations in [23]. where Dt is the time step.
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where B(u)
p , C(u)

p,q , B(v)
p , and C(v)

p,q are diagonal m 3 m matrices, SI

and SII are rectangular matrices and s is some non-negative in-
teger.

At the interface x 5 0, the two solutions are matched by an
interface condition involving 2 1 s time levels and l points
in space,

Un11
0 5 Os

q521
Ol

p51

(d (u,u)
p,q Un2q

p 1 d (u,v)
p,q V n2q

p )

(11)

V n11
0 5 Os

q521
Ol

p51

(d (v,v)
p,q V n2q

p 1 d (v,u)
p,q Un2q

p ),

where d (u,u)
p,q , d (u,v)

p,q , d (v,v)
p,q , and d (v,u)

p,q are scalar coefficients.

2.2. GKS-Theory Applied to the Interface Problem

The GKS-theory (Gustafsson, Kreiss, and Sundström [18])
is a general stability theory for mixed initial-boundary value
problems. It is based on normal mode analysis. The normal

FIG. 1. (A) Continuous matching of first kind. (B) Discontinuous matching mode analysis was developed by several authors, notably Kreiss
of first kind. (C) Continuous matching of second kind. (D) Discontinuous

[25, 26], Osher [35, 36], and Gustafsson, Kreiss, and Sundströmmatching of second kind. Symbol 3: cell centers in the left subdomain. Symbol
[18]. Further work related to normal mode analysis has beens: cell centers in the right subdomain.
carried out by Osher [37] and Varah [51] for parabolic prob-
lems, by Strikwerda [45] for semidiscretized equations, and by
Michelson [31] for multidimensional strictly hyperbolic prob-

For a matching of first kind (see Fig. 1A for continuous
lems. Other contributions are due to Goldberg and Tadmor [14,

matching and Fig. 1B for discontinuous matching), the interface
15] who constructed scheme-independent stability criteria for

is located between the cells j 5 0 and j 5 1 in each subdomain
translatory boundary conditions, and also to Trefethen who

so that Dx (u) 5 1/Nu , x (u)
j 5 2( j 2 1/2) Dx (u) and Dx (v) 5

physically interpreted the GKS-theory [48] and examined new
1/Nv , x (v)

j 5 ( j 2 1/2) Dx (v). For a matching of second kind
instabilities in problems with multiple boundaries and interfaces

(see Fig. 1C for continuous matching and Fig. 1D for discontin-
[49, 50].

uous matching), the interface is located at the cell center j 5
The stability of an interface problem can be analyzed by

0 in each subdomain so that Dx (u) 5 1/(Nu 1 1), x (u)
j 5 2j Dx (u)

introducing the folding trick of Ciment [8, 9]. This trick consists
and Dx (v) 5 1/(Nv 1 1), x (v)

j 5 j Dx (v).
in folding the left subdomain over the right one, thus trans-

In each subdomain the problem (1)–(4) is approximated by
forming the interface problem into an equivalent right half-

implicit difference schemes with 2 1 s time levels and 3 points
problem for which the GKS-theory is directly applicable. Our

in space:
special numbering in the left subdomain (the cells are numbered
from right to left) introduces the folding trick in a natural way.

A GKS-stable approximation subjected to a small perturba-O1

p521

B(u)
p Un11

j1p 5 Os

q50
O1

p521

C(u)
p,qUn2q

j1p , j 5 1, 2, ..., Nu , (5)
tion remains stable, so that the stability of a multiinterface
problem follows from that of each individual interface subpro-

Un11
Nu11 5 Os

q521

SI
qUn2q

Nu
1 gn11

21 (6) blem (see, for instance, [46]). Since one of the purposes of this
paper is to study the stability of interface treatments but not that

U0
j 5 f (2xj), j 5 1, 2, ..., Nu , (7) of boundary conditions, we assume that each exterior boundary

treatment is stable and consider only the stability of the Cauchy
problem with interface defined by the initial value problemsO1

p521

B(v)
p V n11

j1p 5 Os

q50
Op51

p521

C(v)
p,qV n2q

j1p , j 5 1, 2, ..., Nv , (8)
(5), (7) for j 5 1, 2, ... (x , 0), and (8), (10) for j 5 1, 2, ...
(x . 0) connected by interface condition (11) at x 5 0. Since

V n11
Nv11 5 Os

q521

SII
q V n2q

Nv
1 gn11

11 (9) this problem is in diagonal form and the interface condition
(11) involves only scalar coefficients, it is sufficient to consider

V 0
j 5 f (xj), j 5 1, 2, ..., Nv , (10) the stability of the reduced interface problem defined by the
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Cauchy problem with interface for the scalar equation wt 1
M(z) Su0

v0
D5 0,awx 5 0 with a ? 0. In the scalar case, (5)–(8) can be written as

O1

p521

b(u)
p un11

j1p 5 Os

q50
O1

p521

c(u)
p,qun2q

j1p , j 5 1, 2, ..., (12) where M(z) is a complex 2 3 2 matrix. Clearly the reduced
interface problem is GKS-stable if and only if

O1

p521

b(v)
p vn11

j1p 5 Os

q50
O1

p521

c(v)
p,qvn2q

j1p , j 5 1, 2, ..., (13) det M(z) ? 0 for uzu $ 1

In order to check this condition for specific schemes and inter-and the interface condition (11) becomes
face conditions, one needs to have some knowledge of the root
structure of the characteristic equations in the critical case

un11
0 5 Os

q521
Om

p51

(d (u,u)
p,q un2q

p 1 d (u,v)
p,q vn2q

p )

(14)

uzu 5 1. The following two lemmas provide this kind of informa-
tion for dissipative schemes (which we will use in the applica-
tions to fluid flows) and also for a wide class of non-dissipa-

vn11
0 5 Os

q521
Om

p51

(d (v,v)
p,q vn2q

p 1 d (v,u)
p,q un2q

p ). tive schemes.

LEMMA 1. Suppose that the subdomain difference schemes
To analyze the GKS-stability of the reduced interface prob- (12) and (13) involve only two time-levels or are identical.3 If

lem, we look for normal mode solutions of the form these schemes are both dissipative (in the sense of Kreiss),
then for uzu 5 1, the inner roots satisfy

un
j 5 znf(u)

j , vn
j 5 znf(v)

j , j [ N, (15)
(ukuu , 1 and ukvu # 1) or (ukuu # 1 and ukvu , 1). (18)

where z [ C and f(u), f(v) are l2-solutions of the resolvent
equations obtained by inserting the normal mode solution (15) Proof. First note that for ukuu 5 1, ku ? 1, we have uzu , 1
into (12)–(13). In the present case, f(u)

j 5 k j
uu0 and f(v)

j 5 by assumption that the scheme (12) is dissipative. Thus for
k j

vv0 , where ku and kv are roots of the following characteristic uzu 5 1, either ukuu , 1 or ku 5 1. Similarly for uzu 5 1, either
equations of schemes (12) and (13): ukvu , 1 or kv 5 1. So, it remains to prove that ku and kv are

not both equal to one.
For two time-level schemes, the case ku 5 1 or kv 5 1 willO1

p521

b(u)
p zkp

u 5 Os

q50
O1

p521

c(u)
p,qzn2qkp

u (16) occur only when z 5 1 because the schemes are consistent.
For z 5 1, it is well known that 1 is not an inner root for an
outflow boundary problem [15, Lemma 5.1]. Thus for z 5 1,O1

p521

b(v)
p zkp

v 5 Os

q50
O1

p521

c(v)
p,qzn2qkp

v . (17)
we have either ukuu , 1 or ukvu , 1 because the interface is an
outflow boundary either for the left subdomain (if a . 0) or
the right subdomain (if a , 0).For any z with uzu . 1, the characteristic equation (16) has one

For more than two level schemes, if we had ku 5 kv 5 1root ukuu , 1 (called the inner root) and one root ukuu . 1 (called
for some z, then the outer root of (12), which is equal to 1/kvthe outer root). The same is true for Eq. (17). For f(u) (resp.
by the assumption that the two schemes are identical, wouldf(v)) to be in l2 , ku (resp. kv) should be the inner root.2 When
be equal to the inner root. That is, we would have a multipleuzu 5 1, one or both of the roots of each characteristic equation
root ku 5 1 which necessarily occurs when z 5 1 by themay have modulus equal to one. If this is the case, the inner
consistency assumption. In this case, the characteristic equationroot for uzu 5 1 is defined by continuity as the limit of the inner
(16) for z 5 1 would read (ku 2 1) 5 0 which corresponds toroot for uzu . 1 as uzu R 1 and the normal mode solution no
a difference scheme of the following form at steady statelonger belongs to l2 , but is a limit of l2 solutions.
(un11

j 5 un
j 5 uj):A necessary and sufficient condition for the reduced interface

problem to be GKS-stable is that there are no nontrivial solu-
uj11 2 2uj 1 uj21 5 0.tions of the form (15) with uzu $ 1.

If we insert the normal mode solutions (15) in the interface
condition (14), we obtain a system of two equations for u0 Clearly, this is not a consistent approximation of the steady-

state part of the exact problem.and v0 ,

3 In fact, due to the particular numbering of the cells in the subdomains,2 Note that if in the left subdomain the cells were numbered from left to
right, the outer root would be used in the normal mode solution for un

j instead this means that the scheme (12) becomes identical to the scheme (13) when
exchanging the subscripts j 1 1 and j 2 1.of the inner root.
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In order to reveal the importance of the dissipation assump- (ii) Clearly, we have z2 ? k l
uk l

v for uzu . 1 by definition
of the inner roots. Now if we had z2 5 k l

uk l
v , for uzu 5 1, thention for schemes (12)–(13), we are going to show that some

interface conditions, stable for dissipative schemes, may be- from ku 5 2kv we would get ukuu 5 1 so that As(ku 2 1/ku)
would be purely imaginary. Thus from the characteristic equa-come unstable for nondissipative schemes. This will be done

by considering the class of linear multistep methods (LMM) tion, we would have Re(r(z)/s(z)) 5 0. By assumption that
the scheme is A-stable, the stability boundary locus is tangentstudied by Beam, Warming, and Yee [3] for initial boundary

value problems. The construction of LMM follows the method to the imaginary axis only at the origin and Re(r(z)/s(z)) 5 0
implies r(z)/s(z) 5 0; hence r(z) 5 0. Furthermore, strongof lines. It uses a conventional centred difference to approxi-

mate the spatial derivative and then a linear multistep method A-stability implies that r(z) 5 0 has only the root z 5 1 on
the unit circle. Consequently, k l

uk l
v 5 z2 5 1 and by ku 5 2kvin time for solving the ordinary differential equations. Due to

the spatial approximation used, any LMM is nondissipative (at and the fact that l is odd we would get k2l
u 5 21. On the other

hand, consistency implies s(1) ? 0 so that if we had r(1) 5least the Fourier modes corresponding to the wave number
j 5 f are undamped). 0, from the characteristic equation we would obtain ku 5 61.

This is contradictory, since we could not have both k2l
u 5 21For the present subdomain problem, this class of schemes

can be written as and ku 5 61.

r(E)un
j 5 Ashus(E)(un

j11 2 un
j21) 3. STABLE INTERFACE CONDITIONS FOR

ONE-DIMENSIONAL MATCHINGSr(E)vn
j 5 2Ashvs(E)(vn

j11 2 vn
j21),

We now describe and analyze the stability of interface condi-
where E is a shift operator in time (Efn 5 fn11), r(E) and

tions for some easily workable one-dimensional matchings.
s(E) denote polynomials in E, and hu 5 aDt/Dx(u), hv 5 aDt/

Five situations will be considered. The first four have already
Dx(v). For instance, when r(E) 5 E 2 1 and s(E) 5 E, we

been described in Section 2.1. They have been named respec-
recover the backward Euler scheme.

tively: continuous matching of first kind (Fig. 1A), continuous
A LMM is said to be strongly A-stable if (see [3]):

matching of second kind (Fig. 1C), discontinuous matching of
first kind (Fig. 1B), and discontinuous matching of second kind(i) it is A-stable, that is, when applied to the linear test

equation (Fig. 1D). The fifth one deals with a regular mesh overlapping.
Conservation of these interface conditions for nonlinear prob-

lems will be discussed in Section 4.du
dt

5 lu, l [ C,

3.1 Continuous Matching of First Kind
its stability region contains all the left half-part of the complex

This case often arises when the purpose of domain decompo-
lDt plane and its stability boundary locus is tangent to the

sition is parallel computing. This is the simplest situation for
imaginary axis only at the origin,

which an accurate interface condition can be easily obtained.
(ii) all roots of r(z) 5 0 are inside the unit circle except The main idea of extending an interface condition to the case

for the root z 5 1. of implicit schemes, allowing for stable and uncoupled solution
of implicit difference equations in each subdomain, is presentedLEMMA 2. Assume that the subdomain difference schemes
here. A discussion is also presented on the importance of cor-(12)–(13) are defined by the same LMM. Then:
rectly lagging in time the interface values that depend on the

(i) The two inner roots have opposite signs, that is, for adjacent subdomain.
any z, ku 5 2kv ; As there is no mesh refinement and the interface is located

(ii) If the LMM is strongly A-stable, then for uzu $ 1 and at the middle of j 5 0 and j 5 1 in each subdomain (see Fig.
any odd integer l, we have the inequality z2 ? k l

uk l
v. 1A), the boundary cell j 5 0 in one subdomain coincides exactly

with the first interior cell j 5 1 in the adjacent subdomain.Proof. (i) The inner roots ku and kv respectively solve the
An obvious time accurate interface condition can be writ-following characteristic equations:

ten as

r(z) 2 Ashus(z) Sku 2
1
ku
D5 0, un11

0 5 vn11
1 , vn11

0 5 un11
1 . (19)

This interface condition has been studied by Ciment [9] for
r(z) 1 Ashvs(z) Skv 2

1
kv
D5 0.

matching different explicit multipoint difference schemes. Ac-
cording to Ciment, for any pair of dissipative difference
schemes, the interface problem with this interface condition isThus ku 5 2kv .
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GKS-stable. Unfortunately, the condition (19) does not allow Proof. Here we have
for uncoupled multidomain calculation when the difference
equations are implicit. We therefore need to lag it in time. The

det M(z) 5 z2 2 kukv .simplest choice is to define the interface condition at the actual
time step n 1 1, using the solutions at the previous time step
n. This leads to the following interface condition:

Using Lemma 2, one can check that det M(z) ? 0 for uzu $ 1.

un11
0 5 vn

1 , vn11
0 5 un

1 . (20)
In practice, condition (22) is difficult to apply for 0 , au #

1 and 0 , av # 1. It requires some iterative method. Here,
The interface condition (20) is quite simple to implement and since we are interested in steady-state flow computations, we
allows for uncoupled and, thus, parallel computations. Another will only implement the time-inaccurate condition (20) corre-
simple interface condition is defined by sponding to au 5 0 and av 5 0. To enhance the time accuracy of

the matching, it may be interesting to define some intermediate
condition between (19) and (20) by using a different matchingun11

0 5 vn
1 , vn11

0 5 un11
1 . (21)

on the right-hand (explicit) and left-hand (implicit) sides of the
schemes, that is, by lagging in time the interface values only

That is, we first solve the difference equation for u using at the time level n 1 1 so that the interface condition can
un11

0 5 vn
1 , thus giving the solution un11

1 ; then we define vn11
0 be written:

by vn11
0 5 un11

1 and solve the difference equation for v. However,
such a condition is not suitable for parallel computing.

More generally, the interface condition can be written as Hun
0 5 vn

1 , vn
0 5 un

1

un11
0 5 vn

1 , vn11
0 5 un

1

on the RHS

on the LHS.
(23)

un11
0 5 (1 2 av)vn

1 1 avvn11
1 ,

vn11
0 5 (1 2 au)un

1 1 auun11
1 ,

0 # av # 1,

0 # au # 1.
(22)

This is easily feasible, but the stability of (23) is not guaranteed.
The GKS-stability theory does not apply directly to condition

Clearly, this includes the particular interface conditions (19),
(23) because it does not have the same form at each time level.

(20), and (21).
The original GKS-theory has been developed for boundary

Let us now state the stability results.
conditions which are translatory in time but not necessarily in
space (for boundary conditions which are translatory in timePROPOSITION 1. Assume that the difference schemes (12)–
and space, scheme-independent stability critera have been de-(13) involve two time levels or are identical. If these schemes
veloped by Goldberg and Tadmor [15]). We therefore introduceare dissipative, then the reduced problem with interface condi-
a shift technique to make the condition (23) translatory in time.tion (22) is GKS-stable.
It consists of combining the interface condition (23) and the

Proof. The determinant of the associated matrix M(z) for specific difference schemes to obtain a condition at the point
the condition (22) is found to be j 5 1. In other words, we view the approximation as if the

interior schemes were applied from j $ 2 and the interface
condition defined at j 5 1 instead j 5 0. The equivalent interfacedet M(z) 5 z2 2 kukv[zau 1 1 2 au][zav 1 1 2 av].
condition depends thus on the specific interior schemes and a
numerical study of stability using the automatic analysis of

This determinant is different from zero for uzu . 1, because Thunë [47] has shown that it is often unstable even for dissipa-
ukuu , 1 and ukvu , 1 for uzu . 1 and, according to Lemma 1, tive difference schemes.
it is also different from zero in the critical case uzu 5 1 because Thus, although the interface condition (20) is quite simple,
of the inequalities (18). Therefore, the problem is stable. attention needs to be paid to its implementation, since it should

not be reduced to the condition (23).Although dissipation of the difference schemes is sufficient
here for the reduced problem to be stable, it is not necessary.
To see that, we consider only the interface condition (20). 3.2 Continuous Matching of Second Kind

This interface configuration has been shown in Fig. 1C. HerePROPOSITION 2. Assume that the difference schemes (12)–
(13) are defined by the same linear multistep method. If these we discuss only a nonconservative treatment, which will be

applied in Section 8 to demonstrate the importance of conserva-schemes are strongly A-stable, then the reduced problem with
interface condition defined by (20) is GKS-stable. tion. A conservative treatment will be discussed in Section 4.2.
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The interface values un11
0 and vn11

0 are here defined by aver- (un11
0 1 un11

1 )/2 5 (vn11
0 1 vn11

1 )/2

(un11
0 2 un11

1 )/Dx(u) 5 (vn11
1 2 vn11

0 )/Dx(v).
(26)aging

The condition suitable for implicit schemes readsun11
0 5 (un11

1 1 v*1 )/2

vn11
0 5 (vn11

1 1 u*1 )/2,
(24)

(un11
0 1 u*1 )/2 5 (vn11

0 1 v*1 )/2

(un11
0 2 u*1 )/Dxu 5 2(vn11

0 2 v*1 )/Dxv,
(27)

where

where u*1 and v*1 are defined by (25).
In Section 4.2, we will use the Lax–Wendroff scheme to

u*1 5 (1 2 au)un
1 1 auun11

1 ,

v*1 5 (1 2 av)vn
1 1 avvn11

1 ,

0 # au # 1,

0 # av # 1.
(25)

show how to easily make this interface condition conservative
for nonlinear problems.

PROPOSITION 5. Assume that the difference schemes (12)–Condition (24) is nonconservative even for au 5 av 5 1.
(13) have two levels in time or are identical. If these schemes

PROPOSITION 3. Assume that the difference schemes (12)– are dissipative, then the reduced problem with interface condi-
(13) involve two levels in time or are identical. If these schemes tion (27) is GKS-stable.
are dissipative, then the reduced problem with the nonconser-

Proof. Indeed, if we had det M(z) 5 0 for some uzu $ 1,vative interface condition (24) is GKS-stable.
we would get

Proof. For condition (24), we have
XD 5 2rCY, (28)

det M(z) 5 (2 2 ku)(2 2 kv)z2
where r 5 Dx(u)/Dx(v) and

2 kukv[zau 1 (1 2 au)][zav 1 (1 2 av)]
X 5 z 2 [zau 1 (1 2 au)]ku , Y 5 z 1 [zau 1 (1 2 au)]ku

which is different from zero for all uzu $ 1, according to Lemma C 5 z 2 [zav 1 (1 2 av)]kv , D 5 z 1 [zav 1 (1 2 av)]kv .
1. This proves the stability.

By Lemma 1, we have either YD ? 0 or XC ? 0 for any z
We show below that dissipation is not necessary for stability.

with uzu $ 1. Without loss of generality, we can consider only
the case YD ? 0. Then from (28), we deducePROPOSITION 4. Assume that the difference schemes (12)–

(13) are defined by the same linear multistep method. If these
XY/uYu2 5 2rCD/uDu2,schemes are Cauchy stable, then the reduced problem with the

nonconservative interface condition (24) is GKS-stable.
where the overbar denotes the complex conjugate. Here the

Proof. Consider only the case a(u) 5 a(v) 5 0. If we assume real parts of XY and CD are
det M(z) 5 0, we will get

R(XY) 5 uzu2 2 u[zau 1 (1 2 au)]kuu2
z 5 6iku/Ï(2 2 ku)(2 1 ku)

R(CD) 5 uzu2 2 u[zav 1 (1 2 av)]kvu2.

as kv 5 2ku , according to Lemma 2. Thus uzu , 1 for all Using Lemma 1 and the condition 0 # au, av # 1, we obtain
ukuu # 1 and the problem is stable.

R(XY) . 0, R(CD) $ 0
3.3. Discontinuous Matching of First Kind

orIf the grid continuity across the interface is not imposed,
grid construction becomes relatively easier in each subdomain.

R(XY) $ 0, R(CD) . 0.Thus we now study interface treatment with mesh refinement
as shown in Fig. 1B.

The following condition has been discussed by Browning, Therefore for uzu $ 1, condition (28) cannot be satisfied; that
is, the hypothesis det M(z) 5 0 does not hold and the interfaceKreiss, and Oliger [6], using the explicit leap-frog scheme in

each subdomain: problem with the condition (27) is stable.
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3.4. Discontinuous Matching of Second Kind thus det M(z) 5 0 if l is even and the problem is not GKS-
stable.

Here we extend the second kind continuous matching to the
case of mesh refinement (see Fig. 1D). Again a conservative On overlapping grids, the steady state solutions may not be
interface condition can be easily constructed and this will be unique; see [53].
presented in Section 4.2. Here we analyze a nonconservative
treatment obtained by using a linear interpolation, 4. CONSERVATIVE TREATMENT OF ONE-DIMENSIONAL

INTERFACE PROBLEMS

un11
0 5 cuun11

1 1 (1 2 cu)v*1
(29) Since we are interested in computing transonic flows with

shocks and other discontinuities, it is important to ensure con-vn11
0 5 cvvn11

1 1 (1 2 cv)u*1 ,
servation at grid interfaces. In [5], Berger derived a conservation
criterion for a general grid interface. Here we apply this criterion

with cu 5 1/(1 1 r), cv 5 r/(1 1 r) and u*1 , v*1 are defined
to check the conservation of our interface conditions for nonlin-

by (25).
ear conservation laws. In case of nonconservation, we present
another easily workable interface condition for implicit schemesPROPOSITION 6. Assume that the difference schemes (12)–
which is conservative and remains stable.(13) involve two levels in time or are identical. If these schemes

The analysis is based on the nonlinear hyperbolic conserva-are dissipative, then the reduced problem with the interface
tion law,condition (29) is GKS-stable.

Proof. The determinant of M(z) is
wt 1 h(w)x 5 0,

det M(z) 5 z2(1 1 r 2 ku)(1 1 r21 2 kv) approximated by schemes in conservation form,
2 kukv[zau 1 (1 2 au)][zav 1 (1 2 av)].

un11
j 2 un

j 5 s (u)( fj11/2 2 fj21/2), j $ 1, (31)
As u(1 1 r 2 ku)(1 1 r21 2 kv)u . 1 for ukuu # 1, ukvu # 1

vn11
j 2 vn

j 5 2s (v)(gj11/2 2 gj21/2), j $ 1, (32)
and min(ukuu, ukvu) , 1, thus Lemma 1 implies that det M(z) ?
0 for uzu $ 1, showing stability.

where s (u) 5 Dt/Dx(u), s (v) 5 Dt/Dx(v), and fj11/2 , gj11/2 are
consistent approximations of the exact flux function h(w) in3.5. Matching with Grid Overlapping
the left and right subdomains. Due to the particular numbering

When the two subgrids arbitrarily overlap, then some interpo- of the cells in the left subdomain, the right-hand sides of (31)
lation procedure is needed to construct interface conditions and (32) have opposite signs. Schemes (31)–(32) are assumed
(see, for instance, [5, 7, 17, 39, 44]). It can be easily proved to reduce to (12)–(13) when h(w) 5 aw, a being a constant.
that when the interior difference schemes are dissipative, then
an interface condition obtained by any interpolation formula 4.1. Conservation Analysis of Interface Conditions
with positive coefficients is stable (for instance, this has been

Any interface condition discussed in Section 3 can be writtenproved in [39] for the explicit Lax–Wendroff scheme). The
in the condensed formsituation is different for nondissipative schemes. To prove this,

consider the case of a regular overlapping so that the interface
condition is defined by un11

0 5 Ru(un11
1 , u*1 , v*1 )

(33)
vn11

0 5 Rv(vn11
1 , v*1 , u*1 ),un11

0 5 vn
l , vn11

0 5 un
l , (30)

where u*1 and v*1 are defined by (25).where l is the number of mesh points contained in the overlap.
Berger’s conservation criterion can be described as follows.

PROPOSITION 7. Assume the difference schemes (12)–(13) In the case of a Cauchy problem without interface, conservation
are defined by the same linear multistep method. If this method of the difference scheme can be expressed by stating that the
is strongly A-stable, then the reduced problem with interface following quantity is conserved in time:
condition (30) is GKS-stable if l is odd and not GKS-stable if
l is even.

S n 5 Oy
j52y

Dxjwn
j . (34)

Proof. For the interface condition (30), we get det M(z) 5
z2 2 k l

uk l
v . If l is odd, stability follows easily from Lemma 2.

For z 5 1, we have either ku 5 2kv 5 1 or ku 5 2kv 5 21; When there is an interface, a similar quantity can be defined
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which can be split into three parts accounting for the contribu-
tions from the left and right subdomains and the interface:

S n 5 S n
Du

1 S n
Dv

1 S n
interface . (35)

FIG. 2. Nonuniform grid.

If S n11 5 S n for any n, the interface treatment is conservative.
4.2. Conservative Treatment for Various InterfaceIn this case, if the numerical solution of the interface problem

Configurationsis convergent, it converges to a weak solution of the exact
problem; i.e., it allows for a correct shock capturing. For the We have just shown that among the first four interface con-
present problem, the condition S n11 5 S n for any n ensures figurations studied in Section 3, only the first interface treatment
continuity of the numerical flux at each interface. is conservative. Thus we need to construct a conservative inter-

In any case, the quantity S n should be a consistent approxima- face condition for the second, third, and fourth interface con-
tion to the integral ey

2y wdx of the exact solution w. When figurations. The fifth configuration has been studied in detail
approximating this integral by the mid-point formula, we find for explicit schemes in [5] and will not be considered here for
(in the case of discontinuous matchings, we have assumed Dx(u)/ implicit schemes.
Dx(v) 5 2 in order to simplify the notations): We first consider the interface condition (27) for the discon-

tinuous matching of the first kind and use the Lax–Wendroff• Continuous matching of first kind (Dx(u) 5 Dx(v) 5 Dx),
scheme written on a nonuniform grid to show how to easily
make this condition conservative without changing its stability
property. At the end of this section we will make conservativeS n 5 Oy

j$2

Dxun
j 1 Oy

j$2

Dxvn
j (36) the continuous and discontinuous matchings of the second kind

1 AsDx(un
0 1 vn

1) 1 AsDx(vn
0 1 un

1) by transforming them to the first kind.
On a nonuniform grid (shown on Fig. 2), the Lax–Wendroff

scheme can be written as• Discontinuous matching of first kind,

wn11
j 2 wn

j 5 2sj(hj11/2 2 hj21/2),
S n 5 Oy

j$2

Dx(u)un
j 1 Oy

j$3

Dx(v)vn
j

where the numerical flux hj11/2 is given by
1 As Dx(u)un

1 1 As Dx(u)[un
0 1 As (vn

1 1 vn
2)] (37)

hj11/2 5 (1 2 uj)h(wn
j ) 1 ujh(wn

j11)1 As Dx(v)(vn
0 1 un

1)

2 As sj11/2 A(wn
j11/2)(h(wn

j11) 2 h(wn
j ))

• Continuous matching of second kind (Dx(u) 5 Dx(v) 5 Dx),

with sj 5 Dt/Dxj , wn
j11/2 5 (1 2 uj)wn

j 1 ujwn
j11 , sj11/2 5

(1 2 uj)sj 1 ujsj11 , and
S n 5 Oy

j$1

Dxun
j 1 Oy

j$1

Dxvn
j 1 As Dx(un

0 1 vn
0) (38)

uj 5 1/(1 1 rj), rj 5 Dxj11/Dxj .

• Discontinuous matching of second kind,
Instead of considering the matching configuration shown in

Fig. 1B, we will move each interface cell j 5 0 to the position
of j 5 1 in the adjacent subdomain so that the interface configu-S n 5 Oy

j$1

Dx(u)un
j 1 Oy

j$2

Dx(v)vn
j

ration becomes as shown in Fig. 3, and we apply the interface

1 Af Dx(u)un
0 1 As Dx(v)(un

0 1 vn
0) (39)

1 Af Dx(v)(un
0 1 vn

1).

Introducing the corresponding interface conditions into these
quantities and using the schemes (31) and (32) we easily obtain:

PROPOSITION 8. Assume that in the interface conditions
au 5 1 and av 5 1. Then the interface problem with the
interface condition (22) is conservative and those with the

FIG. 3. Discontinuous matching of first kind: nonuniform grid approach.interface conditions (24), (27), and (29) are not conservative.
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condition (22) as if there were no mesh refinement. In this way
the interface problem is redefined by the schemes in conserva-
tive form (31)–(32) with the numerical fluxes,

fj11/2 5 (1 2 u (u)
j )h(un

j ) 1 u (u)
j h(un

j11)

1 Ass (u)
j11/2 A(un

j11/2)(h(un
j11) 2 h(un

j )) (40)

gj11/2 5 (1 2 u (v)
j )h(vn

j ) 1 u (v)
j h(vn

j11)

2 Ass (v)
j11/2 A(vn

j11/2)(h(vn
j11) 2 h(vn

j )),

and the interface condition,

un11
0 5 (1 2 av)vn

1 1 avvn11
1

(41)
vn11

0 5 (1 2 au)un
1 1 auun11

1 .

FIG. 4. Transformation of matchings of second kind into matchings of
The corresponding quantity S n reduces to first kind by adding a third grid: (A) continuous matching; (B) discontinu-

ous matching.

S n 5 Oy
j$2

Dx(u)un
j 1 Oy

j$2

Dx(v)vn
j

where wn11
1 is the solution of another difference equation defined

1 AsDx(v)(un
0 1 vn

1) 1 AsDx(u)(vn
0 1 vn

1) on the third mesh, using the interface conditions

which conserves in time when a(u) 5 a(v) 5 1. Thus the interface wn11
0 5 (1 2 au)un

1 1 auun11
1 , 0 # au # 1,

(43)problem defined by the above nonuniform grid approach in the
wn11

2 5 (1 2 av)vn
1 1 avvn11

1 , 0 # av # 1.interior points and the interface condition (41) for the interface
of Fig. 3 is conservative at steady state.

It can be easily verified that this treatment is conservative ifFurthermore, it can be easily shown that this interface prob-
au 5 av 5 aw 5 1. This is a two-interface problem, each beinglem is linearly equivalent to the one defined by the uniform
(linearly) GKS-stable. However, the stability of each interfacegrid approach at the interior points and the interface condition
does not necessarily ensure the stability of the global problem(27) for the interface of Fig. 1B, which has been proved to be
as shown in [50]. In the present situation, stable behaviour haslinearly stable in Section 3.3. In consequence, we have:
been observed in all our applications.

PROPOSITION 9. The interface problem based on the Lax– The interface condition for the discontinuous case is defined
Wendroff scheme written on a nonuniform grid (31), (32), (40) in the following way. As in the continuous case, the matching
and the interface condition (41) with au 5 av 5 1 is conserva- is reduced to a discontinuous matching of first kind between
tive and linearly GKS-stable. the left subdomain and the third grid, plus another discontinuous

matching of the first kind between the third grid and the rightIn our applications, we have used an implicit scheme of
subdomain. For each of these two matchings, we use a nonuni-Lax–Wendroff type. For this scheme we can easily show that
form grid approach as discussed above for the interior schemesProposition 9 remains valid. For other three-point schemes
and an interface condition similar to (41) so that the approxima-similar results can be easily obtained.
tion is conservative if au 5 av 5 aw 5 1.Let us finally consider the continuous and discontinuous

matchings of the second kind. To make them conservative, we 4.3. Conservation at Steady State
transform them into matchings of the first kind by introducing

Above we discussed the conservation for the time-accurate casea third mesh near the interface. This mesh involves only one
au 5 av 5 1. Here we consider the conservation at steadyinterior point and two interface points (see Fig. 4A for the
state. An approximation is said to be conservative at steadycontinuous case and Fig. 4B for the discontinuous case).
state if it is a convergent solution of a time-dependent conserva-In the continuous case, the interface condition is defined by
tive treatment or equivalently the numerical flux is continuous
across any cell face at steady state.un11

0 5 (1 2 aw)wn
1 1 awwn11

1 , 0 # aw # 1,
(42) Clearly, the steady-state solutions of the interface problems

vn11
0 5 (1 2 aw)wn

1 1 awwn11
1 , 0 # aw # 1, do not depend on the parameters au and av. Therefore, the
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various matchings will be conservative at steady state for any O1

p521

B̂ (u)
p Û n11

j11p 5 Os

q50
O1

p521

Ĉ (u)
p,qÛ n2q

j11p , j1 5 1, 2, ..., (45)values of these parameters, provided they are conservative for
au 5 av 5 1. So we obtain:

O1

p521

B̂ (v)
p V̂ n11

j11p 5 Os

q50
O1

p521

Ĉ (v)
p,qV̂ n2q

j11p , j1 5 1, 2, .... (46)PROPOSITION 10. Consider the general case 0 # au # 1
and 0 # av # 1. Then the continuous matching of first kind
with the interface condition (22), the discontinous matching of

The dual variable of x will be denoted by j .
first kind with the condition (41), and the matching of second

The normal mode solutions of (45) and (46) then take the
kind with the condition (42)–(43) are all conservative at

form
steady state.

5. STABILITY OF MULTIDIMENSIONAL Û n
j1

5 zn Om

n51

k j
un

Qun
un , V̂ n

j1
5 zn Om

n51

k j
vn

Qvn
vn , (47)

INTERFACE PROBLEMS

Michelson [31] has extended the one-dimensional GKS-sta- where kun
5 kun

(z, j ) and kvn
5 kvn

(z, j ) with n 5 1, ..., m
bility theory to multidimensional problems for strictly hyper- are the inner roots of the characteristic equations of (45) and
bolic systems approximated by dissipative schemes. The stabil- (46), Qun

and Qvn
with n 5 1,2, ..., m are linearly independent

ity analysis is not as simple as in the one-dimensional case vector coefficients, and un , vn with n 5 1,2, ..., m are unknowns
because generally we cannot diagonalize a multidimensional (scalar) to be determined by the interface conditions. As the
hyperbolic system. To overcome this difficulty, Michelson also schemes involve only three points in each space direction and
proposed a technique to stabilize any multidimensional problem the system is strictly hyperbolic, all the roots kun

, kvn
are distinct.

when it is stable in the one-dimensional case. In this section, From Lemma 1, we have the obvious result:
we first recall briefly how to analyze the stability of a multidi-

LEMMA 3. For any pair (ku 5 kun
, kv 5 kvn

) with n 5 1,2, ...,mensional interface problem. Then we show that we can get
m and uj u # Ïd 2 1f, Lemma 1 is valid.stability results only for particular cases such as a scalar equa-

tion. Finally we show how to efficiently extend the stabilizing
5.2. Stability Analysistechnique of Michelson to multidomain treatment.

We present a stability analysis only for the continuous match-
5.1. Formulation ing of first kind. The Fourier transform of the multidimensional

interface condition reads:As in the one-dimensional case, we assume that all the exte-
rior boundary treatments are stable; thus we only need to con-
sider a Cauchy problem with an interface at x1 5 0, for the Û n11

0 5 (1 2 av)V̂ n
1 1 avV̂ n11

1 , 0 # av # 1,
(48)hyperbolic system

V̂ n11
0 5 (1 2 au)Û n

1 1 auÛ n11
1 , 0 # au # 1.

Wt 1 A1Wx1
1 Od

r52

ArWxr
5 0, (44) Introduction of the general solutions (47) into the condition

(48) yields

where W(x, t) [ Rm, x 5 (x1 , x ) [ Rd, x 5 (x2, ..., xd), t [
R1, and Ar , r 5 1, ..., d, are constant m 3 m matrices such z On5m

n51

Qun
un 5 (zav 1 (1 2 av)) On5m

n51

kvn
Qvn

vn

that A1 is nonsingular and, for any unit vector n 5 (nr) [ Rd,
the matrix od

r51 nr Ar has m real eigenvalues and a complete set
z On5m

n51

Qvn
vn 5 (zau 1 (1 2 au)) On5m

n51

kun
Qun

unof eigenvectors. We also assume that all these eigenvalues are
distinct; i.e., (44) is strictly hyperbolic.

System (44) is approximated by a difference scheme in the
which can be rewritten asleft half-space x1 , 0 and a difference scheme in the right half-

space x1 . 0 and some condition is prescribed at the interface
M(z)(u1 , ..., um , v1 , ..., vm)t 5 0x1 5 0. Denote the solutions of the difference equation for

x1 , 0 by U n
j1 , j- and those of the difference equation for x1 .

0 by V n
j1 , j- , where the integer j1 is relative to x1 and the multiinte- with the partitioned matrix:

ger j to x .
To analyze the stability, we Fourier-transform the corre-

sponding difference equations with respect to x and obtain M(z) 5 FFu

Gu

Gv

Fv
G .

expressions of the form
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The block-elements of the matrix M(z) are defined by Fu 5 Here K is a scalar constant, k is a positive integer such that 2k
be equal to or slightly greater than the order of accuracy of thezQu , Fv 5 zQv ,
difference schemes in order to maintain the global accuracy of
the interface approximation, g(x) is a cutoff function which isGu 5 (zau 1 1 2 au)QuLu , Gv 5 (zav 1 1 2 av)QvLv ,
equal to one near the interface x 5 0 and decreases to zero
apart from it, and Dj is a discrete Laplacian operator on Rd21

where Qu 5 (Qu1
, Qu2

, ..., Qum
), Qv 5 (Qv1

, Qv2
, ..., Qvm

), Lu ,
defined byLv are diagonal matrices with diagonal elements: lun

5 kun
,

n 5 1, 2, ..., m, lvn
5 kvn

, n 5 1, 2, ..., m. The matrices Fu

and Gv are nonsingular since the fundamental solutions are Dj 5 Od

r52

(Er 1 E 21
r 2 2) Erfj1 ,..., jr ,..., jd

5 fj1 ,..., jr11,..., jd
.

linearly independent.
Clearly, the determinant of M(z) will not vanish if the same

holds for the matrix: Michelson proved that if the one-dimensional problem is stable,
then for any k there is always a constant K0 such that the
multidimensional problem is stable for K . K0.

M9(z) 5 M(z) FF21
u

0

2F 21
u GvF 21

v

F 21
v

G Here we show that for particular interface conditions, the
stabilizing technique can be simplified. Suppose that the inter-
face condition without dissipation can be written as

5 F I

GuF 21
u

0

I 2 GuF 21
u GvF 21

v
G .

DuuU n11
0, j 5 DuvV n11

1, j .
(49)

DvvV n11
0, j 5 DvuU n11

1, j .Now we have det M9 5 det(I 2 GuF 21
u GvF 21

v ). If Qu 5 Qv ,
which, occurs, for instance, when m 5 1 or when all the Jaco-
bian matrices Ai , i 5 1, 2, ..., d commute, then Then the interface condition with dissipation is

det M9 5 det(I 2 z22LuLv), z ? 0. DuuU n11
0, j 2 KDk

j U n11
0, j 5 DuvV n11

1, j
(50)

DvvV n11
0, j 2 KDk

j V n11
0, j 5 DvuU n11

1, j .Using Lemma 3, we find that det M9(z) ? 0 for all uzu $ 1 and
all uj u # Ïd 2 1f; that is, the multidimensional problem is
stable. The corresponding matrix M(z) is given by

If Qu ? Qv , we cannot get any conclusion for the stability.

5.3. A Universal Stabilizing Technique M(z) 5 FhAu

Bu

Bv

hAv
G ,

In general we do not know whether a problem, stable in the
one-dimensional case, remains stable in the multidimensional

where h 5 1 1 K2k od
i52 (1 2 cos ji)k. For convenience, wecase. We could examine the eigenvalue problem numerically

denote Q(z, j ) 5 Bu A21
u Bv A21

v .as done by Thunë [47] for initial boundary value problems
without internal interface. Here, we shall rather rediscuss the PROPOSITION 11. Suppose that no dissipation is added in
universal stabilizing technique of Michelson [31] to maintain the interior difference schemes and the problem with interface
the stability of a multidimensional interface problem when it condition (49) is stable for j 5 0. If r(Q(z, 0))# 1 for uzu $
is stable in the one-dimensional case, that is when it is stable 1, then there exists a constant K . 0 such that the problem
for j 5 0. Michelson proposed this technique originally for with interface condition (50) is stable for uj u # Ïd 2 1f.
multidimensional problem without interface. In the present in-

Proof. The determinant det M(z, j ) is nonzero if and only ifterface problem, it consists of adding a numerical dissipation
in the tangent direction for both the difference schemes and

det (h2I 2 Q) ? 0.the interface conditions. That is, in the difference schemes,
U n

j1 , j and V n
j1 , j are replaced by

As r(Q(z, 0)) # 1 for all uzu $ 1, we can choose K large enough
to have(I 2 Kg(x)Dk

j )U n
j1 , j , (I 2 Kg(x)Dk

j )V n
j1 , j ,

h2 . r(Q) ;uj u # Ïd 2 1f, j ? 0,
and in the interface conditions, U n

j1 , j and V n
j1 , j are replaced by

so that det (h2I 2 Q) ? 0 and thus det M ? 0 for all uzu $ 1
(I 2 KDk

j )U n
j1 , j and (I 2 KDk

j )V n
j1, j . and all uj u , Ïd 2 1f.
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FIG. 6. Patched grid. The interface cell (0, j) of the left subdomain is
formed by the corners A, A9, B9, and B. This cell is divided into two parts by
the cell-side line CD of the right subdomain.FIG. 5. Patched grid without mesh refinement.

For continuous matchings of the first and second kinds, the
get the total numerical flux for each cell face at the interface.

condition r(Q(z, 0))# 1 is satisfied for all uzu $ 1; thus without
It does not involve any flux interpolation. Furthermore, it is

modifying the interior difference schemes we can ensure stabil-
done in such a way that the interface condition is linearly

ity by using the interface condition (50).
equivalent to the one obtained by area-weighted interpolation

In our subsequent applications, we have never found a multi-
and thus is linearly stable.

dimensional instability; thus the stabilizing technique has not
Let us detail the interface condition for a two-dimensional

been used.
grid patching. For each subdomain, there is a line of boundary
cells located in the adjacent subdomain. Consider the boundary

6. A CONSERVATIVE INTERFACE TREATMENT FOR 2D
cell of the left subdomain defined by the indexes i 5 0 and j

PATCHED GRIDS
(see Fig. 6). The corners of this cell are denoted by A, A9, B9
and B. The cell face AB lying at the interface x 5 0 is dividedIn the so-called patched grids, like the one shown in Fig. 5,
into parts AC and CB by the line CD which separates the cellsthe two subdomains share a common grid line at the interface
(1, j) and (1, j 1 1) of the right subdomain.but there is no grid continuity across the interface. The use of

Suppose that the x-direction numerical flux at any interiorpatched grids makes the construction of the mesh of geometri-
face (i 1 As, j) is of the formcally complex problems a relatively easy task. The key point

with these grids is to define stable and conservative interface
conditions.

fi11/2, j 5 Os

s521

u (u)
s fs(un2s

i, j , un2s
i11, j),Rai [42] devised a one-sided flux interpolation method to

ensure conservation for a patched grid having a common cell-
center line at the interface. The interface condition for one

where the u (u)
s denote constant coefficients. Then the numericalsubdomain is defined from the conservative variables while for

flux on the line AB for the left subdomain is computed as:the adjacent subdomain the interface condition is defined from
the numerical flux. This can be considered as a particular case

f1/2, j 5 fAC 1 fCB (51)of the flux interpolation method of Berger [5]. However, we
are not able to obtain general stability results for Rai’s method.
Here we present a different interface condition which is conser- fAC 5 aj Os

s521

u (u)
s fs(un2s

i, j , vn2s21
i, j ) (52)

vative and unconditionally stable for dissipative difference
schemes. Instead of having a common cell-center line, our
patched grid technique has a common cell-side line. In the one- fCB 5 (1 2 aj) Os

s521

u (u)
s fs(un2s

1, j , vn2s21
1, j11 ), (53)

dimensional case, this is the matching of first kind (Fig. 1A).
We will discuss the interface treatment only for the case without
mesh refinement. When there is a mesh refinement in the direc- where aj 5 uAC

R

u/uAB
R

u.
tion normal to the interface, we write the difference schemes For the right subdomain, if the x-direction numerical flux at
on a nonuniform grid (as explained in Section 4.2) to make the any interior face (i 1 As, j) is
interface treatment conservative. The case of mesh refinement
in the tangent direction can be included in a direct way.

The present treatment consists in computing the numerical gi11/2, j 5 Os

s521

u (v)
s gs(vn2s

i, j , vn2s
i11, j)

flux for each interface divided segment and summing them to
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FIG. 7. Patched grid. The interface cell (0, j) of the right subdomain is
formed by the corners E, E9, F9, and F. This cell is divided into two parts by
the cell-side line HG of the left subdomain.

FIG. 9. Convergence histories for single domain and multidomain compu-
tations. My 5 0.85 and CFL 5 9. R is the l2-residual on the density equation.then the numerical flux on the line EF (Fig. 7) is computed by

g1/2, j 5 gEG 1 gGF (54)
det M(z, j ) 5 z2 2 [a 1 (1 2 a)eij ][b 1 (1 2 b)eij ]kukv

gEG 5 bj Os

s521

u (v)
s gs(vn2s

1, j , un2s21
1, j ) (55) is nonzero for uzu $ 1 and uj u # f.

The above interface condition has been formulated on a
gGF 5 (1 2 bj) Os

s521

u (v)
s gs(vn2s

1, j , un2s21
1, j11 ), (56) Cartesian mesh but its extension to a curvilinear mesh is

straightforward.

7. APPLICATIONSwhere bj 5 uEG
R

u/uEF
R

u.

PROPOSITION 12. The problem defined by any pair of conser- We present here multidomain calculations of external flows
vative three-point (in each space direction) difference schemes over the NACA 0012 airfoil and a two-element airfoil using
and the interface condition (51)–(56) is conservative at steady the compressible Euler equations. These test cases have been
state. Furthermore, it is linearly GKS-stable for any pair of chosen for their sensitivity to the accuracy of the numerical
scalar three-point dissipative difference schemes which involve treatments.
two time levels or are identical.

7.1. Implicit Euler SolverProof. Conservation is obvious. Stability follows from the
fact that this interface condition is linearly equivalent to Present calculations are based on the two-dimensional Eu-

ler equations
un

0, j 5 avn21
1, j 1 (1 2 a)vn21

1, j11

wt 1 f (w)x 1 g(w)y 5 0 (57)
vn

0, j 5 bun21
1, j 1 (1 2 b)un21

1, j11

with
for which the determinant

w 5 1
r

ru

rv

rE
2

f (w) 5 1
ru

ru2 1 p

ruv

(rE 1 p)u
2 , g(w) 5 1

rv

rvu

rv2 1 p

(rE 1 p)v
2

FIG. 8. A 95 3 25 grid for the upper half part of the NACA 0012 airfoil
(partial view). and, assuming a perfect gas law,
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FIG. 10. Pressure contours for My 5 0.85, CFL 5 9: Left, single domain; Right, multidomain (continuous matching of the first kind).

p 5 (c 2 1)r[E 2 As(u2 1 v2)], (d1f)i,j 5 fi11/2,j 2 fi21/2,j

(d2f)i,j 5 fi,j11/2 2 fi,j21/2
where r, p, u, v, and E denote the density, the pressure, the

(e1f)i,j 5 As(fi11/2,j 1 fi21/2,j)velocity Cartesian components, and the total energy and c 5
1.4 is the specific heat ratio. (e2f)i,j 5 As(fi,j11/2 1 fi,j21/2).

System (57) is approximated by the following implicit cen-
tred scheme of second-order accuracy [28], which is a factored If the matrices A and B commute, the above scheme is always
implicit version of a Lax–Wendroff-type approximation, linearly stable in L2 and dissipative, except when A or B is

singular. It involves 3 3 3 points at level n and leads to the
solution of block-tridiagonal linear systems. For the Euler equa-Dw̃i11/2,j 5 2Dt(d1 f/Dx 1 e1e2d2g/Dy)n

i11/2,j
tions, for which A and B do not commute, this scheme has a
large stability domain. It is always stable for Mach numbersf̃i11/2,j 5 [(e1 f )n 1 As(e1A)n Dw̃]i11/2,j

lower than 0.8 or greater than 2.4 and conditionally stable in
Dw̃̃i,j11/2 5 2Dt(e1e2d1 f/Dx 1 d2g/Dy)n

i,j11/2 between with a stability limit depending on the fluid velocity
direction. This stability constraint is due to the ADI factoriza-

g̃̃i,j11/2 5 [(e2g)n 1 As(e2B)n Dw̃̃]i,j11/2 tion of the implicit treatment and can be removed by using a
line-relaxation technique. See [11, 24] for details.Dwexpl

i,j 5 2Dt(d1 f̃/Dx 1 d2 g̃̃/Dy)i,j
The above scheme has been implemented on a structured

mesh by using a multidomain finite-volume formulation. On aDw*i,j 2 As(Dt/Dx)2d1[(e1An)2d1(Dw*)]i,j 5 Dwexpl
i,j

rigid wall, the slip condition is prescribed and the pressure is
obtained from a linear combination of the discrete form of theDwi,j 2 As(Dt/Dy)2d2[(e2Bn)2d2(Dw)]i,j 5 Dw*i,j
x and y-momentum equations to obtain a conservative approxi-

wn11
i,j 5 wn

i,j 1 Dwi,j , mation of the normal momentum equation. On an external
boundary, we prescribe the freestream direction and the entropy
and enthalpy for a subsonic inflow, or the pressure for a subsonicwhere A 5 df (w)/dw and B 5 dg(w)/dw are the Jacobian

matrices, ds , es for s 5 1, 2 are spatial operators such that for outflow. Due to its own dissipative properties, this scheme is
used without artificial viscosity as in [28].fi,j defined at the mesh point x 5 i Dx and y 5 j Dy,

FIG. 11. Patched grids for the upper half part of the NACA 0012 airfoil (partial view): Left, first interface position; Right, second interface position.
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FIG. 12. Pressure contours (Dp 5 0.05) for My 5 0.85, CFL 5 9, computed using patched grids: Left, first interface position (located in the supersonic
region); Right, second interface position (aligned with the shock).

7.2. Comparison between Multidomain and Single Domain graphic code we have an interpolation different from the one
used in the interface conditions.Calculations

To make a direct comparison between single domain and
multidomain computations, we first calculate the flow over the 7.3. Various Multidomain Computations of a Transonic Flow
upper half of the NACA 0012 airfoil at zero angle of attack, over a NACA0012 Airfoil
using symmetry boundary conditions on the symmetry line.

We now compute a transonic flow at Mach number My 5The mesh for the single domain computation is displayed in
0.85 and angle of attack a 5 18 over the NACA 0012 airfoilFig. 8. Continuous grids and patched grids will be considered.
using different multidomain techniques. In each case, we haveWe first compute the flow at Mach number My 5 0.85 using
used CFL 5 9.two subdomains with grid continuity; that is, the mesh is cut

The first technique is based on the C-mesh shown in Fig.at some vertical mesh line to form two subdomains for multido-
14. The airfoil is represented by a cell-center line. The twomain calculations. The interface crosses the supersonic pocket
ends of this line join at the trailing edge to form a double-(see Fig. 10). We apply here the continuous matching of the
defined line (Fig. 15A) which is considered as an interface.first kind with the interface condition (20). The convergence
Thus, we define a single domain computation, where one parthistories for the single- and two-domain computations using
of the domain is matched to another part of the same domain.the same CFL number (CFL 5 9) are shown in Fig. 9. We see
Clearly, the matching at the interface is continuous of the secondthe multidomain calculation converges as well as the single
kind. A simple averaging is applied at the interface, that is, thedomain calculation although the interface condition has been
nonconservative interface condition (24) with au 5 av 5 0.lagged in time.
In the second technique used here, the original C-mesh is cutWe then compute the same flow using patched grids. Two
on the two vertical mesh lines passing through the trailing edgeinterface positions are tested. In the first one the interface

crosses the supersonic pocket and in the second one it is partially
aligned with the shock. The corresponding patched grids are
shown in Fig. 11. The pressure contours for both of the interface
positions are displayed in Fig. 12.

Comparison of the convergence histories for single and bido-
main calculations with patched grids is presented in Fig. 13.
When the interface crosses the supersonic flow region, the
convergence of the patched grid technique is only slightly de-
layed, in comparison with the single domain computation.
When the interface is aligned with the shock, the number of
time iterations required to reach the zero-machine convergence
is increased by 15% with respect to the single domain calcula-
tion. From the pressure contours we see that there is very
little difference between the single domain solution and the
multidomain solutions with patched grids. As the grid is highly
discontinous across the interface in patched grid computation,
we cannot expect perfect continuity of pressure contours, even FIG. 13. Convergence histories for single domain and patched grid multi-

domain computations. My 5 0.85, CFL 5 9.though the interface condition is quite accurate, because in our
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FIG. 14. C-mesh with 257 3 33 points (partial view). FIG. 16. Patched grid with mesh refinement (8084 points).

three techniques. Surprisingly, the third technique, which usesto form two subdomains: one upstream of the trailing edge and
the most subdomains, has the best convergence rate. The firstthe other downstream (Fig. 15B). The continuous matching
technique, which has a single domain and which uses a noncon-of the first kind with the interface condition (20) is applied. In
servative interface condition, converges more slowly than thethe third technique, the domain is divided into three parts (Fig.
other two. To reach a residual of R 5 1025, the number of time15C): the near field upstream of the trailing edge equipped with
iterations of the one-domain technique is two times that of thethe same mesh as previously, its continuation downstream of the
tridomain technique. The reason seems to be that the outsidetrailing edge, and the far field using a coarse C-mesh matched
subdomain has a coarse grid, which annihilates some waveswithout continuity. The composite grid is shown in Fig. 16.
dominating the influence on the convergence rate. Thus, in-The convergence histories for the three techniques are shown
creasing the number of subdomains does not necessarily delayin Fig. 17. The convergence histories are quite different for the
the convergence rate.

The pressure contours with different matching techniques
are shown in Fig. 18. The pressure distributions on the walls
are displayed in Fig. 19. We see that the third technique, which
involves mesh refinement, produces some oscillations near the
interface at the refined side. It is well known that mesh refine-
ment could induce oscillations. One example has been shown
in [6]. As has been pointed out by Kreiss [27], oscillations
near a boundary can be eliminated by adding some tangent
dissipation. Despite the oscillations, the third technique is al-
ways stable and gives a correct shock position (Fig. 19) which
depends strongly on the conservation of the numerical approxi-
mation. The one-domain technique, which uses a nonconserva-

FIG. 15. Subdomain distributions: (A) One-domain treatment (continuous
matching of second kind); (B) Bidomain treatment (continuous matching of
first kind); (C) Tridomain treatment (continuous matching at line bfd and FIG. 17. Convergence histories for three different multidomain treatments.

My 5 0.85, a 5 18, CFL 5 9.discontinuous matching at line abcde; see Fig. 16).
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FIG. 18. Pressures contours (Dp 5 0.05) with My 5 0.85, a 5 18, CFL 5 9: Left, one domain (non-conservative); Middle, two subdomains (conservative);
Right, three subdomains (conservative).

7.4. Flow over a Two-Element Airfoil

Finally, we compute a transsonic flow around a two-element
airfoil formed by two parallel NACA0012 airfoils. They are
shifted by a distance equal to a half chord in both the parallel
and perpendicular directions. The free-stream Mach number
My 5 0.7 and there is no angle of attack. Previous computations
have been done either on a Cartesian grid [10, 33] or an unstruc-
tured grid [20]. To the authors’ knowledge, there is no other
computation of this test case based on curvilinear meshes.

The composite grid we use is displayed in Fig. 20. It is made
up of five subdomains. One subdomain is located above the
upper airfoil, another is beneath the lower airfoil, two others
are between the airfoils and the final one is downstream of the

FIG. 19. Pressure distributions on the airfoil for three different multido- trailing edge of the upper airfoil. The total number of cells is
main treatments. My 5 0.85, a 5 18, CFL 5 9. 8340. The flow has been computed using our conservative

interface condition for patched grids. The convergence history
for CFL 5 8 is shown in Fig. 21. The convergence is quite
regular and rapid for this type of problem. Only 1000 iterationstive interface condition, gives a wrong shock position. It leads
are needed to reach a l2 residual on the density equation ofto a lift coefficient Cl 5 0.424 which is much greater than the
1025. The pressure distribution around the airfoils is shown inexpected and more accurate value Cl 5 0.376 reported in [28]
Fig. 22. Figure 23 presents a comparison of the pressure con-for a very fine grid. The bidomain technique yields Cl 5 0.366

and the tridomain technique leads to Cl 5 0.370.

FIG. 20. Patched grid for the two-element airfoil (partial view). Five FIG. 21. Convergence history for the two-element airfoil. My 5 0.7,
CFL 5 8.subdomains and 8340 cells.
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FIG. 22. Pressure distribution along the airfoils. My 5 0.7, CFL 5 8: (A) Cp along the upper airfoil; (B) Cp along the lower airfoil (location of the weak
shock, dashed line).

tours obtained by the present multidomain technique and those
of [10, 33], where centred Runge–Kutta methods are used on
Cartesian grids. The three flow fields are quite similar. Notably,
a strong shock wave exists between the two airfoils. However,
there are two new features in the present results. First, the
strong shock is better resolved. Second, a weak shock appears
on the lower surface of the lower airfoil, as can be seen from
the pressure distribution (Fig. 22). Let us also note that the
quality of the results obtained in [20] with a method using an
unstructured grid is poor with respect to the methods using
Cartesian or patched curvilinear grids.

8. CONCLUDING REMARKS

Interface conditions which are conservative, GKS-stable and
ensure convergence to a steady state have been proposed for
computing compressible steady flows using implicit finite dif-
ference schemes on multiblock grids. The present multidomain
method deals with the cases of continuous as well as patched
grids with and without mesh refinement. Since it leads to inde-
pendent solutions of implicit difference schemes in each subdo-
main, it can be easily implemented on parallel computers. Typi-
cal numerical results have been obtained for transonic flows
over single- and two-element airfoils. The comparison between
single domain and multidomain computations shows that do-
main decomposition does not necessarily delay the convergence
to steady state because it allows for a more efficient grid distri-
bution. The comparison with the results obtained by accurate
Cartesian grid methods for the two-element airfoil demonstrates
the accuracy of the present multidomain method.
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